
UNCLASSIFIED

AD NUMBER

AD470724

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors; Critical
Technology; JUL 1965. Other requests shall
be referred to Air Force Materials Lab.,
Attn: Metals and Ceramics Division,
Wright-Patterson AFB, OH 45433.

AUTHORITY

AFML ltr dtd 12 Jan 1972

THIS PAGE IS UNCLASSIFIED



AFML-TR-65-167

NONLINEAR EFFECTS OF LARGE DEFLECTIONS
AND MATERIAL DAMPING ON THE

STEADY STATE VIBRATIONS OF BEAMS CO

SHUH-TWU CHOW

P. R. SETHNA 0
UNIVERSITY OF MINNESOTA

0
LU 0

TECHNICAL REPORT AFML-TR-l5-167

JULY 1965

AIR FORCE MATERIALS LABORATORY
RESEARCH AND TECHNOLOGY DIVISION

AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO



NOTICES

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely related Government procure-
ment operation, the United States Government thereby incurs no responsibility
nor any obligation whatsoever; and the fact that the Government may have
formulated, furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as in any
manner licensing the holder or any other person or corporation, or conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

Qualified users msy obtain copies of this rmport fron the Defense Documenta-

tion Center.

The distribution of this report is limited because it contains technology

identifiable -ith itemz on the Mutual Defense Assistance Control List excluded

from export under U. S. Export Control Act of 1949, as implemented by AFR 400-10.

Copies of this report should not be returned to the Research and Tech-
nology Division unless return is required by security considerations,
contractual obligations, or notice on a specific document.

600 - September 1965 - AF33(615)773-S-94



NONLINEAR EFFECTS OF LARGE DEFLECTIONS
AND MATERIAL DAMPING ON THE

STEADY STATE VIBRATIONS OF BEAMS

SHUH-TWU CHOW
P. R. SETHNA



FOREWORD

This report was written at the University of Minnesota,
Department of Aeronautics and Engineering Mechanics, Minne-
apolis, Minnesota 55455, under USAF Contract No. AF 33(615)-
1055, Project No. 7351, "Metallic Materials," Task No. 735106,
"Behavior of Metals." The work was administered under the
direction of Air Force Materials Laboratory, Research and
Technology Division, with Mr. J. P. Henderson, MAMD, acting
as project engineer.

This report was written during the period April, 1964,
to April, 1965.

Our thanks go to Miss Marlene Iverson and Mrs. Nancy
Buretta for the preparation of this manuscript.

Menuscript of this report was released by the authors April 1965
for publication as an RTD Technical Rieport.

This technical report has been reviewed and is approved.

Chief, Strength and Dynamics Branch
Metals and Ceramics Division

ii



ABSTRACT

Nonlinear forced oscillations of slender beams are
studied. The analysis takes into account both the nonlinear
effects arising from large deflections of the beam and those
arising from nonlinear material behavior. A hysteretic
stress-strain law of the Davidenkov type is used in the
analysis. Detailed results are given for large amplitude
oscillations of beams with hinged ends. Theoretical results
for a simply-supported beam are compared with experimental
results.
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SECTION I

INTRODUCTION

The study of nonlinear vibration of elastic beams and plates

has had a long history. The most widely known large deflection

theory of plates was established by von Karman in 1910 1 An

account of the derivation of the von Karman's equations is given

by Timoshenko etal., [2]. Biot [3a, 3b] formulated the theory of

large deflection of plates directly from the nonlinear theory of

elasticity. Novozhilov [4] used a similar approach. He made the

distinction between the case of strong bending and the case of inter-

mediate bending. In the former case, no restriction is placed on

the magnitude of the rotation of the cross section; while in the

latter case, which is the same as von Karman's theory, the angle

of rotation is restricted to be small as compared with unity.

Based upon von Karman's theory, a number of problems of rec-

tangular plate were solved by Levy [5a, 5b] and Way [6a], and

problems of circular plates by Way [6b] and Stippes and Hausrath

[7]. The dynamical equations corresponding to von Karman's

theory were studied by Herrmann [8] and more recently by

Tadjbakhsh and Saibel [9] • Eringen [Oa, lob] , on the other hand,

formulated the dynamical equations for beams and later also for

membranes which correspond to Novozhilov's strong bending case.

The nonlinear free vibrations of string has been studied by Carrier

[lla, llb] and using methods similar to that of Carrier, the non-

linear free vibration u. beams having immovable hinged ends has

*Numbers in brackets refer to listed references begin-

ning on page 87.

1



been treated by Eringen [10a]. Both Carrier and Eringen use

a perturbation method. The same perturbation technique was

extended in the study of free vibration of rectangular plates with

hinged immovable edges by Chu and Herrmann [121. As for the

forced vibration cases, approximate solutions for the nonlinear

response of rectangular plates were obtained by Kirchman and

Greenspon [13] with the use of the static load-deflection relation-

ship. The nonlinear response of a beam with immovable hinged

ends due to an excitation sinusoidally distributed in the space

variable was treated by Mettler [14a]. By assuming the resultant

axial force to be independent of the spatial coordinate, he was able

to obtain a Duffing type response showing a hard spring effect. A

similar treatment was also given by Kauderer [15]. The bending

equation used by Mettler and Kauderer were the same one as

originated by Kirchhoff [16] which are essentially the same as

the one of the von Karman's theory. By assuming a first order

approximation solution, Yamaki [17] also obtained a hard spring

Duffing type response for rectangular and circular plates. The

response for circular plates was also studied by Nowinski [18]

In considering the effect on bending due to axial force, an approxi-

mate solution in terms of elliptic functions was obtained by

Woinowsky-Krieger [191. McDonald [20] has obtained results in

terms of elliptic functions for the case of immovable hinged bars

with small motion. Experimentally, the nonlinear hard spring

Duffing type response were shown to exist by Lee [21] , Tobias [22]

Lassiter etal., [23] and Smith etal., [Z 41



In all the above work the nonlinear effects arise from

large deformations. Another source of nonlinearity arises

from the nonlinear behavior of the material of the beam.

Resonant structural vibrations can be controlled by the

effective use of material damping. The problems of practical

interest are those connected with the vibration of metallic

structures. As has been shown by Lazan [25], Lazan and

Goodman ,6], and also others, most metallic materials under

cyclic loading exhibit a relationship between stress and strain

that is not elastic even at stresses well below the yield point.

The stress-strain relationship during loading and unloading are

different. The area enclosed by the loading and unloading

branches of the stress-strain curve (hysteresis loop) serves as

the indication of amount of energy dissipated. This area of the

loop is independent of the frequency of cyclic strain. Due to the

above reasons, the classical viscoelastic Voight models cannot

adequately describe the behavior of metallic materials. In view

of this, Mindlin et al., [27] proposed a semi-empirical method.

In this work the viscous coefficients are taken inversely pro-

portional to the frequency of the excitation, so as to compensate

the frequency effect when the time derivative of strain is taken.

Recently Sethna [28] , in dealing with transient vibrations of a

beam, also adopted the same concept but to a nonlinear visco-

elastic stress-strain law. A completely empirical hysteretic

stress-strain law has been proposed by Davidenkov [29]. A pair

of equations, one for loading, and one for unloading are used.

Pisarenko [301, as well as Panovko [311 , used Davidenkov's

stress-strain law to study the small vibrations of cantilever
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beams with results that compare very well with experimental

results.

It thus appears that there is a large amount of literature

concerned with nonlinear effects on beam vibrations where the

nonlinear effects arise from large deflections of the beam. In

the works concerned with these problems the material is always

assumed to be elastic. Then there is a smaller body of literature

concerned with nonlinear effects that arise from nonlinear

behavior of the material of the beam and in these works the

deflections of the beams are assumed small.

The present work is concerned primarily with those

problems where the nonlinear effects of large deformations

occur along with the nonlinear effects due to nonlinear material

behavior.

In surveying the literature on large deflection problems

for elastic beams it appears that most of the investigations are

concerned with slender pinned beams with immovable ends and

a hard spring Duffing type response under sinusoidal excitation

is predicted. Relatively little attention is given to problems with

other end conditions and in particular nothing is known about the

large oscillation of an elastic beam that is truly simply supported,

i.e., with one end free to move in the direction of the axis of the

undeflected beam. A secondary objective of this work is to

investigate this problem.

With these two objectives in mind and for simplicity of

presentation this dissertation is divided into two parts. Part

one deals with the elastic problem involving large deformations

4



and part two deals with the large deformation problem with

nonlinear material behavior. In this latter part Davidenkov's

law is used. In both parts, two particular cases are treated.

One is the immovable hinged ends case, and the other is the

simply supported case. In both cases, steady state solutions

are sought. The motions treated belong to Novozhilov's

strong bending type, and the equations of motion are similar

to those of Eringen's. Both rotatory inertia and shear de-

formation effects are included in the analysis. The excitations

are either in the form of a periodic force uniformly distributed

or in the form of a periodic motion exerted at the supports and

the nonlinear response of the beam is studied.

The mathematical problems are nonlinear boundary value

problems. The method of analysis used here is the perturbation

method.

The stability of the nonlinear steady state solutions are

also investigated in an appendixand here an adaptation of the

asymptotic method of Krylov, Bogoliubov, and Mitropolsky

is used [32, 33].

The appendix referred to here is the one in a
doctoral thesis by the first author at the University
of Minnesota, with the same title as that of this
report.

5



SECTION 2

STATEMENT OF THE PROBLEM

Consider a homogeneous rod of uniform cross section,

with a longitudinal plane of symmetry. Let the right-handed

Cartesian coordinate system Oxyz be chosen as shown in

figure 1 with Oxz as the plane of symmetry and Ox passing

along the median line. The length of the rod is I

0I
- x

y
z

Fig. 1 - Beam in the undeformed state

2.1 DEFORMATION

The following three assumptions will be made:

(a) The rod is free of load in the y-direction and we will

consider all quantities independent of y, and that there

is no displacement in the y-direction.

(b) Plane cross sections remain plane, though they are

not necessarily perpendicular to the median line

during the deformation.

(c) Relative elongation in the z-direction is neglected.

*Prescott in deriving Timoshenko beam equation, made use of

the same assumption. See [34].

6



Now examine a segment of a length Ax taken from the beam

as shown in figure Z. During the deformation, if the cross section

which was originally at x and perpendicular to the median line

makes an angle 0 with Oz, and if the shear angle is denoted by

y, then a, the angle which the median line makes with x-axis, is:

= 0+y (1)

ý x x-

0x, x', u

w z x

As

.'

zt, w z sin0 0 .

Fig. 2 - Displacement of the beam element

Let a material point with coordinates (x, z) in the undeformed state

have new coordinates (x', z') in the deformed state. Then with

u(x, y) and w(x, y) as displacements of the median line in the x and

z directions respectively, we have

x' = x + u - z sin e

z' = w+ z cos0 (2)

The length of a line element (dx, o) in the deformed state is given by

ds = (dx' 2 + dz'Z)z

=(1w 'x + (Z Cos 0),Iz1 + [II + u, x- (z sin 0),]23' dx (3

which is obtained by using (2) and by taking limit as Ax approaches

zero. A subscript after a comma will mean differentiation.

7



The relative elongation in the x-direction is defined as

ds ()
dx

Equations (3) and (4) yield

E E - z 0, (5)

withI z 2~1

= w, + (1 + u,] (6)
X X

where E is the relative elongation of the median line.

-x- ---- d---
E 

uu
x d

ldx+ audx-

w T

aw d
"dx

w

Fig. 3 - Geometry of the deflection curve

From the geometry of the deflection curve as shown in figure 3,

we have,
W,

x
tan a = 1 + u,

x

Wo
x

sin a =

1 + u,
COS = = (7)

where ( is as defined in (6)



2.2 STRESS-STRAIN RELATIONS

If T is the normal stress, and a is the shear stress,
xx xz

then by Hooke's law

T = E E -Ez ,
xx x

(Y Gy (8)
xz

Now let

N = dA = EAC

M =[ zdA = -EIO,
f xx x

Q =f axz dA = k'GAy (9)

In (9), A is the cross-sectional area, I is the area moment of

inertia of cross section, k' is the shear-deflection coefficient

which is a modifying factor as used by Timoshenko [35] and

others, the value of which depends on the shape of the cross

section. For instance, for a rectangular cross section, k' = 0.833.

2.3 EQUATIONS OF MOTION

u

- -.. dx .

r 0)
N()M t} ) K(s)

Q(s)
M(s + ds)

w N(s + ds)

Q(s + ds)

Fig. 4 - Loading diagram

A free body diagram of an element of the beam is shown in

figure 4. The element is bounded by the top and bottom surfaces

9



of the beam and on the two sides is bounded by cross sections

of beam that are plane and which were normal to the center line

before deformation. The shear forces (Q) are parallel to these

plane elements but the normal forces (N) are along the center

line and are not necessarily normal to these planes. It will be

assumed that the Cartesian axis system, Oxyz (reference frame)
d 2 f(t )

can have an acceleration in the z direction. Then from
dt

2

figure 4 the equations of motion are:

(N cos a),x - (Q sin 0),x = p A u,tt (10)

(N sin a), + (Q cos 0), + K(x,t) = pA (w+f(t)), (1)x x t

M, - Q (1 +E) cos (a - 0) = -J0,tt (12)

x

where K (x, t) is the vertical load during vibration, p is the mass

density, J is the mass moment of inertia per unit length.

There are eight unknowns occurring in equations (10), (11),

and (12), namely N, Q, M, a, 0, u, w, and €" But in addition to

(10), (11), and (12), we have one equation, (6), another one from

(7), three more from (9). Thus, there are enough equati(ns to

take care of the unknowns.

We will proceed to reduce the above eight equations to three

equations and express them in terms of u, w, and 0. Using

equations (7), (6), and (9), equation (12) gives

J, -EI 0,

Q - 0tt xx (13)

sin0 + (1 + u,) cos 0

From equations (I) and (9), we have

0
a = 0 + y = 0 + QAG (14)

10



From equations (7) and (9), we have

N = EAC= EA C + (15)

Substituting equations (7), (13), (15), into (10) and (11), we obtain

p~ 1+ u,
-pAu,tt + EA (I + u,) - 2 2] 'wx+ (1 + U,x~

J 0' tt- EI 06xx 
)(

W,

S~x:

-p Aw, + EA , -

tt x 2 +(1 +u,

1wJ, -Ex e,
Sta- El + }, + K(x, t) - pA f(t), = 0 (17)
tan 0+ ( + u, Xtt

Substituting equations (14) and (13) into the first of equation (7),

we obtain

xx0A [Ot x i 0 (18)tan 0+ k7 AG [w, sin 0} + (I + u, )cos +=u1 +1u)

Thus, we have three equations, (16), (17), and (18) in terms

of three unknowns, w, u, and 0. Up to now, we have not put any

restriction on the magnitude of displacement (u, w) and rotation (0).

As long as the strains are within the elastic limit, these three

equations can give results for values of u, w, and 0 of any magnitude.

2.4 COMPARISON OF THE EQUATIONS WITH
OTHER KNOWN THEORIES

Either equations (19), (11), and (12) or equations (16), (17),

and (18) can be reduced to equations corresponding to more

simplified theories.

11



2.4.1 Eringen's Equations of Motion

By neglecting the shear deformation, i.e., by letting

o = a, and by dropping the external loads, equations (10), (l1), and

(12) can be reduced to Eringen's equations [10a] .

2.4.2 Equations According to von Karman's Finite
Deformation Theory

If we drop shear deformation, i.e., put 8 = a, omit

rotary inertia term, i.e., put J = 0, omit the term f(t), and consider

Sas very small compared with unity, i.e., put 1 + ( 1, from

equations (10), (11), (12), and (15), we obtain

-pAu,tt + EA [(1 +U,) - cos 0 1 - (Q sin 0),x = 0 (19)
x

- pA w, tt + EA [(I + u, x )tan 0 - sin 0] + (Q c os 0), x + K'(x, t) = 0 (20)

x

Xxx
-El 0, -Q= 0 (1

xx (1

The second equation of (7) becomes

sin 0 = w, (22)

We further assume that 0 is sufficiently small so that we

can neglect all quantities which have the same order of magnitude

3as e

Accordingly, (22) becomes

8 = w, (23)x

Substituting (23) into (21)
Q - EI w, (24)

xxx

Substituting (24), (23) into (19) and (20), ard retaining only first

and second order terms we obtain

*in deriving (25), the term (Q sin 0), is dropped and in derivating
(26), tan 0 is approximated by (0 + 03/3) )sin 0 by (9- 0 3 /3!) and

(Q cos 0),x by Q,x.

12



pA u, tt - EA(u, + I w, ), x0 (25)pAutt x x x
1 3

pAw, - EA (u, w, + WW, )3 + EI W, K (x, t) (26)
ttx x x X xxxx

Equations (25) and (26) are equations which correspond to

von Karman's theory of plategand are also the equations used by

Kauderer [ 15[.

2.4.3 Linear Theory and the Timoshenko's

Beam Equations

First linearizing the second of equation (7), we

obtain
a = W,

x

Using equation (14), it becomes

Q
0 + Q W,k' AG x

or

Q = k' (w, - 0) AG (27)
x

Now linearizing equation (1 5),.

N = EA u, (28)

x

Finally by using equations (27) and (28), and by

linearizing equations (10), (11), and (12), we obtain

- pAu,tt + EAu,xx = 0 (29)

-pAw,tt + Qx = 0 (30)

P, -EI 0, - Q = 0 (31)p0'tt xx

We have dropped the external load term and the term f(t) in

equation (30), and we have let J = pI in equation (31). Equation

(29) is the wave equation for the longitudinal waves.

13



Substituting equation (2.7) in equations (31l) and (30),

we obtain

-p PI ,tt + El 0, xx+ k' (w, x- 0) AG = 0 (32)

pAW t-k' (w, x- 0), xAG = 0 (33)

Now eliminating 0 in equation (32.) by using equation (33), we obtain

pA w,t + EI W, - (pI + EE ) W + p I t= 0 (34)

Equation (34), or equations (32.) and (33) are called Timoshenko's

beam equations. *

*e Reference[135] p. 33 1, equations (I )(m) or equation (129).

14



SECTION 3

SOLUTION OF THE PROBLEM

3.1 EQUATIONS OF MOTION IN DIMENSIONLESS FORM

Equations (16), (17), and (18) will be put into dimensionless

form. First the following notation is introduced
14  

4n -pA 14
2 El , n = 1, Z 3,3 (35)

n

where wn is the natural frequency of flexural vibration of the nth

normal mode, and Pn is the corresponding tharacteristic number,

both for the linear case

We shall be interested in the steady state solutions of the

problem under conditions of sinusoidal excitation. It is not difficult

to show that the interesting results occur when the excitation

frequency is in the neighborhood of one of the linear natural

frequencies of flexural vibrations of the system. It will there-

fore be assumed that the frequency of excitation i• is in the

neighborhood of the nth linear frequency w n The symbol Un

will be used to make the time dimensionless, thus:

T = 9 t (36)

n

Instead of excitation by an external load, the periodic

motions of the system can also be caused by a sinusoidal

motion of the support. Thus we let

f(t) = w cos 0 tn
or y 2 _

fw cos 0 t (37)n n

•See reference 135], p. 325 (116).

15



Now let us introduce the following dimensionless quantities

- U -W w (38)u=- , = -I' I- Wo=- (38

where I is the length of the beam.

Substituting (35), (36), (37), and (38) into (16) and (17), and

multiplying both equations by I/AE, we obtain the equations in

dimensionless form:

4 2
I 2 n 

+n -+uau p + I + U, )- -'--ý
A•2 . , TT 2 21 +-,•2

At n [Wz+I 1 + (I +U'a

I E l + n TT }, 0 (39)
Al£ 2 ,€ + 11 + U., cot ,

4 2

I~ ~ W n+__ wi

EJ -)f2n ',T T 0 , + -- . n 2
(I + W COS T = 0Al 

w t

n (40)

Similarly, equation (18) becomes

2 El

I7 0a n TT 12 
02 a

k'G A W, t L i sin +(+ t )cos 0I W, (41)
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3.2 PERTURBATION SERIES

To solve equations (39), (40), and (41), we shall develop a

perturbation procedure. First we assume the following series:

2 3
w = W1 11 + w 2 11 +w 3 1 + ....

2 3
u ulr1 + u 2 2] + u 3r1 +....

n Wn + A In + A 2 n 2n +

2 3
0 = e1 7 + e 2 + e3 3 +.... (42)

where Tj is a small dimensionless parameter, 0 < « << 1 depending

on the slenderness of the beam as discussed below. The third of

equations (42) is written in a manner such that 0n stays in then

neighborhood of the nth linear natural frequency of flexural vibration.
2

In equations (39) and (40), there appears a quantity I/Al . If we

2
let I = Ar , where r is the radius of gyration of the cross section,

then I/Al = r /12, which is the inverse of the square of the

slenderness ratio. in the following, we shall consider only slender

beams. Thus we let
I I c71 (43)

AlZ

where c is a dimensionless constant of zero order in 71. We also let

E I
= 2 en (44)k ' G A;•2

To express 0 in terms of w and u, equation (41) can be used.

By using series expansions and by using equations (42), (43), and (44),

both sides of equation (41) are expressed in power series in 71, and

then by equating coefficients of like powers of i], we obtain
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8 1 W l,

0 = W2  - u lg Wl't + `ew f 3
w,,

03 = 3,.6- u lg(w - ult wlt + ewl, 19 ) 3 -w uo ,

4 J Z
-ec Pn W1, tt 7--+ew ,,-e(u l lo)g9 +e wl,99 (45)

From equation (6) and first of equation (9):

N = E = [;N + (1 + 1 ,)] + (46)

Using approximations, we have

N =- = Ul ++(uz + 1 , Z)

+ +, W - 3 + (47)

From equation (13),
4 2

-~f__ 1 0' 1n n O0

Q A n

EA (1 +'i, )cos 0 + wV sin 8

Using series expansions and equations (4Z), (43), and (45), we have

Q 2 3
Q" zi (-c w ) +r3 (2c ul, W - c w + cU

-C e w + c + w(48)

18



.1

Finally, using the series expansions of sine, cosine and (1 +x) Z

and substituting equations (42), (43), (44), and (45) into equations

(39) and (40), we obtain

n 2 2-cr1 T n + AlnT+ ..q ) (u1 TT 11 +u 2TT 11 + ....

(A)
n

r 2 222

- uI +1 • + c] + C7(wl,• w11 + ... ),1 = 0 (49)

4

-c CTI ( Wn + AinU+ ... ) (wl,TT21 + W2,TT1 + W 0 COS T)

WA
n

+[(Wl,g 11+wz,'n" +..(ul• un +½w -u 1

1 [+ 4 W71
+ ... )1,• + c ( 3n WlTT pI 1-9 -W" , 11 2

2 2 2 _wl-,_ 2
+ u1 w1 ,1 + u 1 ,Tw 1 ,11 -ew • •+...)(11 2!

2 2 2 2 222 E--++K-+...)(1-u ,•,-uz, -½Wl r +ul, ,1 +..) +
EA (50)

Equating coefficients of like powers of 11, we get

u =0* (51)

Z: 4
ii: n3 w + w = 0 (52)n I1,TrT ,

*By using the boundary conditions, we will show later that u 1 - 0.

Consequently, for brevity, we will drop all u 1 terms henceforth.
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j (u? + I, 2), = 0 (53)

3 4n in3

+iP WZT + 2 w -(
1,gttg n 1,tTT C I l, I

+~ W_ O T(4
o 0

+1 4 4 4 w O + (54) w +

(u -c +( +3 w 2, +c? w + (55)

4

4 w j + ( A w n
nC 3,T w2ýTP 2 in ,TT Zn IT

n

+ (U 2) "I 4

1:uz w2 1 + 2W 1 ,9 w 2t +- 2 3 P~ n W +0(OST(56

1 3 Jn

*wher KW~ =- l n v w 0 12ar substituted ~
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The external load term (---j-]and the term due to the sinusoidal
4 

)

motion of the supports (W on cos T) are made to appear in equation

(54). In this way, we are starting the perturbation with the solution

of equation (52) as the generating solution. Thus, the generating

solution is a solution of the free vibration problem.

The above equations are applicable for all types of con-

ventional boundary conditions. Note that since the axial

displacement u is also considered in the present theory, a

distinction must be made between the conventional simply supported

case and the both ends hinged case. In the farmer case, one end

of the beam is allowed to move axially; while in the latter

case, both ends are immovable. These two cases will be worked

out in detail. The technique used for these two cases can also

be applied to other cases, although the analysis for other cases

is much more complicated.

3.3 BOTH ENDS HINGED CASE

The boundary conditions are

At • = 0; 1, w 0, u= 0 andM = 0 (57)

Since M= -EI0 we have at = 0; 1, 0 = 0

If the series expansions for w, u and 0 of equation (42) are used,

then conditions (57) will be satisfied if

at 0, 1 w = 0
i

u. = 0 i = 1, Z, 3 (58)
1

*For instance, fixed ends, free ends, etc.
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From (51) and (52)

u 0 (59)

4
Sw +W = 0 (60)nl I,TT

Equation (59), together with the boundary conditions that at • - 0, 1,

u 1 = 0, gives the following solution

u1 = 0 (61)

Solving equation (60) under the boundary conditions (58), we have

= - nw
n

OD
m

W - am sin mwgcos 2 T (62)

m 1

where n is any positive integer.

Since

01 = W lt

cOD
2

.•01= a m Mr cos mr• cos T (63)
m =m=l n

Using the solution (62) for w1 , and taking into consideration of the

boundary conditions that at 0 = o,1, u 2 = o, equation (53) yields the

following solution:
0o

1 2 1 2 22 2 m 2
u ,t +-21w -g 4 a m Ir -cos 2 T (64)

m 1 n
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Equations (61) and (62) give the solution in the first approxi-

mation. This solution is the same as that for the free vibration

of the linearized problem. In order to proceed to the next

approximation, it is advisable to take

w1 = an sin nirt COST, n = 1, Z, 3 ,... (65)

T = 2 t
n

i.e., in equation(62) we let

a = O,m r n
m

a = a , m n
m n

and consequently equation (64) becomes
1 2 1 22

u + W =w (ann n) cos T (66)
2,~ 2 l,'t n

A justification for taking w 1 in the above form is given in

Appendix A. We turn to equation (54)

4 (nr)4 Aln 1 1 3

(n ) WZTT+ wZl+ WlTT- iUz,• Wl(u + w

n
K 3

w)4)

+ e wc(n) W J + w n COST (67)+ ew1•€ W,•TTpI EI 0

Express the loading as a Fourier's sine series

El + wn 7 COST =B sin mwt coSo nt (68)

m1

Refer to note on page 5.
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Using equations (65), (66) and (68), equation (67) becomes

cO

(nr)w 2WT+ - B sin m'r COS T

m= 1

•r4 in. 1 34 4
- (nT) a -- sin nrt cos T + 1 a n 4r sin nnr

n 2 16c n
1

(3 COST + COS 3
T) - (e + c -- )(ni) 6 a sin nirr COST = 0 (69)

pI n

In the right side of (69), the terms with the factor sin n~rr

COST are the secular terms, so called because they would produce

the solution for "w " of the form TA sinT sin nirt, which then2 n

would destroy the periodicity of the solution. Just as in the theory

of oscillation for nonlinear systems [30],in the process of

eliminating these secular terms, we will be able to find the

response relation of the system. Following Pisarenko [30] we let

equation (69) be multiplied through by sin nTt cos T, and then

integrate the resulting equation throughout the whole length of the

beam (t from 0 to 1) and over one cycle (T from 0 to 2Tr).

Note that by using integration by parts and by applying the

boundary condition of (58), we have

f f [(nr) 4 w2TT + w 2 , sin niTý COST d t dT = 0 (70)

Taking into the consideration equation (70), we have

"See Reference [ 3 0 J Chapter II, Section 10, p. 54.
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r I 4 Ain
B sin mrrg cos T + (n )a - sin nCL COS TffZ m n W2

0 0 1m=

I6---an3 (n n)4sin nt• (3 COS T + COS 3ST)

J )6 r

+(e + c ) (n ) a sin nT~rcos1 sin ngr COS T = 0 (71)
PI n T

Carrying out the integration, we obtain

..4 iln 3 3 )4 J. )n )6

B + (nTr) a - - a (n) + (e + c )(nr) a = 0n n 2 16c n PI n
n

or

In 3 2 J n B n
- a -(e + c (nTr) - (72)

W2 16 c n pI (n n)4 an n

The response equation can thus be written as

•2
2- + 

--n) I J + - (n7)

- = 1 2 Al 11 (P1  k'G
n n

+ (a Tl) 2 n (73)n ( n -r) 4 11 a

n

As might be expected, the linear correction terms are due to the

rotatory inertia and the shear deformation, while the nonlinear

*It agrees with equation (140) of reference [35] , p. 335
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3 A12  2Z

term 1 (r1a is due to the axial force, the magnitude
161 n I A1 2

of which is proportional to the slenderness constant - =
.I2c I

•- . When the term containing the external force (B ) is omitted
rz n

in equation (73), the resulting response equation represents the

stem of the response curve. Since the term 3 (a 11) i

161 (an is
proportional to the square of the amplitude and is always

positive, the stem of the response curve bends toward the

right (figure 10). This is so called hard spring effect. In fact,

the pattern of equation (73) is similar to that of the Duffing's

equation of nonlinear oscillation theory.

Another physical phenomenon associated with nonlinear

spring effect is the jump phenomenon. Here jump refers to the

phenomenon of a sudden and abrupt increase or decrease of the

amplitude when the excitation frequency changes only slightly.

In the present case, it happens in the region of dfbc of

figure 12. In figure 12, as excitation frequency increases, the

amplitude increases from point a up to point b. Further increase

of the frequency will cause a drop in the amplitude to point c. On

the other hand, if the frequency is gradually reduced from point c

toward the left, the amplitude will go along the right branch of the

response curve up to point f. Further decrease of the frequency

will cause a sudden jump of the amplitude from point f to point d.

The portion f e b of the right branch of the response curve can be

shown to be unst~able. (See Appendix B).***

Reference 136] p. 85 equation (25) and p. 88 figure 23

Reference 132] p. 245 and figure 80.

Refer to note on page 5.
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Let us examine the case when there is no external load and

the beam is excited by the sinusoidal motion of the supports only, i.e.,

K = f(t),tt = w (nr)4 cos 2n t

Expressing w in terms of a sine series, we have
0

4 3 - - sin mIrt

K = 4n w w cos 02 t T (74)

m = 1, 3,...

Using equation (74), the response equation (73) becomes

91 2 ~4wo121,
n Tr) 1 -+ +2 (nan 75

2I 2ý 2r2~ n) nITl~a
W Al 4- n

n

for odd n, and

2

= 1 - (n n)2 + + 9 (ra (76)

2k 4h 2  n

n

for even n.

The difference of the response for odd n or even n in the linear

case will be discussed in Appendix C. To solve for u., using

equations (65) and (66), and the boundary condition that at • = 0,

u 2 = 0, thus we have

1 22 2 2

u = - a n 2W cos T(1 - 2 Cos n2rn)
2,¢ 4 n

"'Use is made of the Fourier sine series formula, valid for

f() -wo -1< t < 0, and f(t) = wo, 0 < t 1 (here only the right

half, 0 < < 1 is needed). For reference, see Churchill "Fourier

Series and Boundary Value Problems," McGraw-Hill, Ist ed.

p. 6 4 Prob. 3.

**Refer to note on page 5.
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By integration

1 2
U2 = -6 a n nsin 2nr (1 + cos ZT) (77)

In view of equation (72), equation (69) becomes

44D

nTr w2 .,.,. B m sin mrg cos T

mn=l,m~n

1 3 44."16c a n iT sin nig cos 3T

Solution of which is
Co) 3
00 B sin myrt cos T a

w )7 r + n sin nirg cos 3T
2 (m4- n4) r 4 128c

m=1,m#n

(78)

Thus u and w can be written as

u = u1 9+ u2r1179

-1 2= 1-7 (anTI) n rr sin 2nrý (cos 2Qnt + I
16 n n

2
w + w =j (ina) sin nwn cos 2t

+ OD (12 Bm) sin mirg COS 0 t4 4 4 o nt

(m -n )r
m =i,m ~n

(Ta )3 A1 2

+ n sin nrrg Cos 30 t (80)
1281 n
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Once 02 is known, the amplitude (rla ) can bc determined byn n

equation (73), and the solution of u and w can be obtained by

equations (79) and (80). Equation (79) shows that period of
u-( 2i20 is only half of that of the external excitation or of w.

It also indicates that when (1 + cos W2 t) = 0, u = 0, and thus
n

u = 0, when w = 0, and an examination of equation (79) shows
1

that the nodal points (u - 0) are at • = - which is the middle

1 2 2
of the beam and at 2n ' 2n' Since sin 2nirr is anti-1

symmetrical about the point g = -, the beam thus is always

stretching out or compressing in a symmetric way about the

middle section.

3.4 SIMPLY SUPPORTED CASE

Assuming that the left end is hinged and the right end is

roller-supported, the boundary conditions are

at =0, u = 0, w = 0, M= 0 (i.e., ,0 = 0)

and at 1=1, w= 0, M = 0 (e, = 0), and

Z F = N cos a - Q sin 0 = 0 (i.e., no resultant axial force at
x

= 1). If series expansions are used, we have

at =0, u. =0, w. = 0, e =0 (81)

i = 1,2,3

and at =1, w. =0, 0 = (82)

i = 2, 32
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Substituting for N, Q from equations (47) and (48), we have

L Fx = (N CoS a - Q sin 0) = EA [•"l. + 11 ,2. +½ 1 2)Z

+1 3+w w,, +w w +cwIwl g - ul awla ) +r 4 ...

Thus we have, at • = 1,

Ul,4= 0

1 2
"u +2 w , = 0

2u3,t + Wl,9W2,t + CWltWl, - UlgWlt = 0 (83)

Equations (81), (82) and (83) are the boundary conditions for the

simple supported case.

To obtain the solution, we start with equations (51), (52), and

(53)

u =0

4nwI +w =0
n WlTT W0

(u I 2
u2, + 2 Wl, t0

Considering also the boundary conditions (81), (82), and (83), we

obtain

uI = 0

wI a sin nwa cos T1 n

E) = a nn"T cosn'na COS T1 n

n= ni, T = Un t, n = any fixed integer (84)
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Here again instead of a series, we choose wI to be a one

term solution. The reason of this choice is exactly the same as

that in the case of immovable hinged ends.

Solution of equation (53) together with the boundary condition
1 2

that at I = 1, u + - W = 0 (equation (83)) is

1 2

UzC + W 4 0 (for allT and 6) (85)

Thus
I 2

u = -- w,

I (nwra cos nwg COs T) 2

2 n

and
1

=--(a nw) ( + - sin 2nwrg) (1. + cos 2T) (86)
8 n 2irn

Aln
To obtain , we again use equation (54). But this time

n
we have

1 3
(u W1 , +-w ) = 0 (equation (85))

Z' w 'ý '2 -1'

Thus instead of (73), we now have the response equation up to the
1

order iq as

12 2JBn =I I J +E n2. v n (87)- =i----- - + k--)nZIrZ 44 (7
W n Al 2 PI Gn 4w 4 7an
n n

For excitation by support motion only, and for 9 n z wIn

(87) becomes

1 1 1 7r- 1 + El 411w 0 (88
-lr (+E o (88)

'If the nonlinear (a 2) term is dropped and for n = 1, equation
(75) is reduced to equation (88).
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As is remarked in Appendix e, this formula is no different

from the response relation of the linear case, and thus we conclude

that the effect of large amplitude on the frequency will be at most
2

of the order r .

We now proceed to find the quantities w 2 , u 3 , and A2n from

equations (54), (55), and (56).

For the sake of simplicity, let us consider the case when n = I

and the loading:

00

-- 2 m2 W 1 sin mw (89)m = 1, 3, ...

Equation (54) becomes

OD

4W +Tw 41T3 w sin mrnw7Tw + W ,.... r w cos T
2,TT 2 o mm = 1, 3, ...

+ Tr 4 1 a sin w cos T + T6(e+ c)a sinwg COST
2 11

(90)

But equation (87) gives

4 AI

41T w + Tr a1 1 + 6 (e + c) 1 = 0
0 2

Thus equation (90) becomes

00

WZ,4 w + w 47r 3 w cos T z sin mnT (91)
= 3, 5, .

Refer to note on page 5.
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The solution of (91) is

4w o.4 w 0 0 sin m ~rý
wz = - COS T n 4 (92)

m= 3, 5... m (m )

To find u 3 we use equation (55)

u, = c Pn U2,TT - (w ,, ,C W ligg)

Thus

u3,t =CPn f UZ,TTd - (w 2 ,• wl,1 +Cwt c wl l, )+k I (T) (93)

After substitution, it becomes

00

= 6 c.a 2 (- - )cos 2T - a, ir Z -41
u3,4 T 1 a 2 41r m =3, 5,... m 4- I

2 2 4 2 2
cos T + ca 1T cos r COS T + k1(T)

By further integration, we have

OD 26 32 sin2ir) 4w cos T
u = 7r c a 2 co _ o

87r3 m=3,5.... 2•(m -1)

sin(m -I + cI Tr sin (m+c1) rn cos T( + sin2Tr
L m- I + m +lI-I +a rCS 4 rr

+ k I(T) + k 2(T)

33



Since at • =0, u 3 =0 and at • = 1,

U3,t + w2,, wI,, + c wl,, Wl, ,, = 0'

it yields

k (T) = 0

and
6 1

k- (T) c al2 4 COS ZT

Thus:

,6 [l 12u 3 ]i~r cos -Tra
UD 2w 6 2 7 Tr2W 0COS8

3r3 6 2 T-2a /4

m=3,5,...

sin(m -1)w + + caI2 w 4mCOS2 T 2I sin 2 irg (94)
m- + m+ 1 c 1  2  4w

A~lw

To obtain 1 we multiply equation (56) by -! dd dT and integrate
12 a

as before: 3
w I w

w + + e-2 wl+e2,wl W1 ,TTw3• • 3 -

2ce J 1T4 + A w +-A w
I 2 21 1,TT 2 11 2,T

~ ~3 2
+w 2 u~~ w u wj-l 71w,g u3,, 2w,g Um, 2 1w,g Wz,g) ,t

A 1 1 4 Jc 4 A 1 1  cJ 4
- --- Ir WCOST - wl2 -- TI 7r WZWg TT

2
+ wilt (wlpt + U,] , ) sini t COST dgdT = 0 (95)
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All

Carrying out the integration, and substituting the values - from
2

e1
equation (88), and cr ?and e ilfrom equations (43) and (44), we obtain

2 A21 E 12 + 2  3JE _I +2 15 2 4 2 2
-1 =(2 ~ ~ (1 GIk'GJI 1l2)+ 3Z (a1I rri)2

2

+- + 4 + I IT (96)

Thus in the second approximation, the response equation takes the

following form:

12 1 2 a21
2 1 2

AAl1 1 1 [

SJ E 2IT12/J

(rr2-45Tr2('1 2 +mJ 1 ww 4w 0 4w 0 2

96 ( al + + Alt2 all - rra lyl + (a III

(97)

In equation (97), terms with the factor are due to rotatory inertia
(J pI

(J =PI, 1, the factor j is retained solely for identification

E

purposes); while with " are due to shear deformation. All these
terms are with the slenderness ratio- 2 as their coefficients.

Al
Since beams associated with large deflection are usually of the

slender type, for all practical purposes, the shear deformation and

rotatory inertia terms can be neglected, and thus equation (97) can be

reduced to
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2
(8 T 2 - 5 r2 (a 4 w 0 4 w01 = 1- (8w - 4 5 )wr (a_,12__1_o_

2 96 2r aa 1) 71(rr a I w

Equation (98) indicates that the nonlinear effect on frequency due to

large amplitude is of the soft spring type (i.e., the response curve

bends towards the left). As is seen in figure 16, it also demonstrates

the jump phenomena. By increasing the frequency it jumps up from

point f (on left branch) to point d (on right branch), and by decreasing

the frequency it jumps down from point b to c. The portion b e f of

the left branch of the response curve is unstable. (Appendix B)

The solution for w and u up to the second approximation can be

written as 2 o

0__ sin m Trw = al l sinTr cos 0 1t + cos 1 t
m 3,5,... m( 1)

(99)

- 1 2 1U- - (Tr al) (T + - sin Z2g) ( I + cos 2 Qit) (100)8 1 2w 1r

For a given frequency Ql1 the amplitude (ila) is determined by

equation (98), and the solution of u and w can be obtained by equation

(99) and (100). Equation (100) shows that period of u is only half

of that of the external excitation or of w. It also indicates that when
(1 + cos 2 lt) = 0, u = 0, and thus u = 0 when w is zero. The maximum

0 - uiraq I2.xmnn
oflul occurs at I land 0l1 t = 0, or uI I Examining

equation (99), it is seen that the second term, i.e., the term with the

summation sign, is very small and converges rapidly. Therefore,

it can be neglected.

36



SECTION 4

MODIFICATION OF THE PROBLEM

DUE TO MATERIAL DAMPING

4.1 STRESS-STRAIN LAW WITH HYSTERESIS

Under alternating loads, the deformation of materials do not

follow Hooke's law. Part of the deformation energy is converted into

the internal friction loss. Due to this process of dissipation of

energy, the stress-strain curve forms a loop, which is commonly

known as the hysteresis loop. The area of the loop determines the

amount of energy dissipated per unit volume of the material during

one cycle of oscillation. This property of energy dissipation is called

the internal damping, or material damping, and is a characteristic of

the material. Material damping serves as an effective agent to

reduce the amplitude of vibration.

One relationship that is commonly used for material damping

is in the form of viscous damping, i.e., the damping is proportional

to the rate of deformation during oscillation. This is the same as

saying that damping is proportional to the frequency of the oscillation.

According to this assumption, the equations of oscillations are linear,

and can be solved often by rigorous mathematical methods. However,

experimental work shows that damping in general is only dependent on

the amplitude of the oscillation and is independent of the frequency.

The use of viscous damping for the vibration analysis, therefore, is

not justified.
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Based on the fact that the material damping is dependent on

the amplitude and is independent of frequency, Davidenkov proposed

an empirical stress-strain law. Davidenkov's law was adopted by

Pisarenko for cantilever beams (both Euler-Bernoulli and

Timoshenko beams), and the analysis agrees quite well with the

experimental results.

Davidenkov's stress-strain law consists of two expressions.

One expression is for the ascending branch of the hysteresis loop

(loading); the other for the descending branch of the hysteresis loop

(unloading). In functional form, it is expressed by

= ~ (C +( f n)~ -nl E n])

or taking the derivatives, we obtain

d o" ' I + , )n - li

(102)
[ ~n-li

E -I v(E - C) I
if o

where arrows towards the right indicate the ascending branch, i.e.,

loading or dE/dt > 0 (t:time), while arrows towards the left indicate

the descending branch, i.e., unloading or dC/dt < 0, and

E is the Young's modulus

E is the amplitude of the strain (absolute value)

0

( is the strain at any instant

a- is the corresponding stress

v, n are parameters for the hysteresis loop.
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A sketch of the hysteresis loop of equation (101) is shown in figure 5.

0"0

"-...slope=E

Fig. 5 - Hysteresis Loop -- Davidenkov's Stress-Strain Law

The following are the properties of the Davidenkov's stress-

strain law:

(a) The damping energy, i.e., the area of the loop, is

independent of the frequency but is dependent on

the strain amplitude C .

(b) For the same amplitude of strain, different

materials have different loop areas. The loop

area then depends on the two parameters v and n.

These two parameters also determine the shape

of the hysteresis loop. However, as shown by

Pisarenko [301, the shape of the hysteresis loop

has little effect on the damping properties and

therefore if we take n to be the number 2

or 3 and vary v accordingly, the hysteresis loop

thus obtained usually gives satisfactory results

for damped vibration problems.

(c) The following conditions of symmetry are satisfied:

do- doa- == -Eo IC+C
00

do- do-

dEI = +C dE 0-Eo
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(d) The starting points of loading and unloading are

always with a slope equal to E, the Young's

modulus. Thus

do-

0

do-
= E

0

Davidenkov's law, as expressed by equation (101) is only for

the case when the strain is symmetric about the origin. For the

case in which the hysteresis loop is not symmetrical about the origin,

i.e., the extreme values are not equal, jl I 2 !; I #1 02

(see figure 6),we can adopt 0-

loading -

- -unloading

Fig. 6 - Unsymmetrical Hysteresis Loop

the same functional relationship of Davidenkov's law and make the

assumption that the loop is symmetrical about the point((C1 +C .)/Z,

(a-I + o-2)/Z)" The stress-strain law then takes the following modified

form:
n -1 2

T" E(•_ - [(C - (C n 1( C ]
n il - ij-i

•"~ ~ E +--[ ((2 _ )n I •ln]
nE{ + n r ( n - C 1- (103)
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This modified form of equation (103) also possesses the properties

(a) - (d) of Davidenkov's law, but now the amplitude of the strain is

defined as the average of the extreme values, i.e., E0 = Ez - E1/z.

For most metals, the parameter n can be taken as 2 [30].If n = 2,

equations (103) become

T E{(E. 14£ [c'+ + E CC2)£lI

22 2 1 2J

(104)

In the following development, the Davidenkov's stress-strain

law in its modified form expressed by equations (103) or (104) will

be used.

4.2 NATURE OF STRAIN CYCLES IN BEAMS AND STRESS
IN TERMS OF BEAM DISPLACEMENTS

Before deriving the equations for the motion of beams with

hysteretic material properties, it is necessary first to get a physical

understanding of the strain cycle occurring at any point in the beam.

For the sake of simplicity, the excitation frequency will be

assumed to be near the lowest linear flexural mode frequency, and

just as in the undamped case, only two cases, one with both ends

hinged and the other with simply supported ends, will be considered.

4.2.1 Both Ends Hinged Case

Since the hysteretic damping effects are very small in

comparison with the elastic effects (for metallic materials) it will be

assumed that the basic strain cycle is similar to the one for an elastic

beam.
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Section 3.3 gives the results in the first approximation

for an elastic beam with hinged immovable ends as follows:

w = Iw R W1W] = IaIil sin rW cos T

1 2 1 2 2 2
= 0, U + -- w - a ir Cos T

1 '� 2 l,t 4 1 (105)

The axial strain of the middle plane is expressed by equation (47):

1 W 2 2E..= Us 1, + (u 2 ,g + 1- ,g )- +2 2.

The axial strain at any point is obtained from equation (5):

E= C - zo (5)

Substituting equation (105) into (47) and (5), we have

1 2) z 2
S= 1 (a l1 r cosT) + z- a1rW2 sin 7rcos T (106)

4 1 T1

where the first term is due to axial tension, while the second term

is due to bending.

Differentiating E. with respect to T,

dE 2 zd - a~ipr] sinT (•-ai os +-snr)

T + sin T (107)

Positive values of dE/dT corresponds to the loading branch of the

hysteresis loop (figure 6); while negative values of dFl/dT corresponds

to the unloading branch. The number of strain cycles that occur at

any point during one cycle of beam motion is determined by the number

of changes in sign that occurs in the strain rate during that interval

of time at that point. The hysteretic stress-strain law for each strain
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cycle is also dependent on the maximum and minimum value of C

of that cycle (E1 f C2 of equation (104)). For these two reasons, the

stationary values of equation (106) will now be examined. The

stationary values of C is determined by the zeros of equation (107),

i.e., at T =0, Of , 2W ....

and when

1 a-cos T + sin rw = 0 (108)

i.e., when

T Cos (-1 2z sinir (109)

for

Z>0, < T < r; and w < 7 < 3w
0 0 2

Since I cos Tj < 1, no solution of equation (109) is possible if

12z sin rgI > alIII

There are two types of cyclic variations of strain and they depend

on the solution of equation (109). These two types are described below.

(a) Case whenj Zz sinwrgl < alI q

For this case, for the interval 0 < T < Zn, there are

two roots of equation (109). These roots shall be called To and To.
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3 Tr
For z > 0, we have: - < T < iT, and 7T < T < -. Based on the

2 - 0- - 0- 2
knowledge of all the zeros of equation (107) and the signs of dC/dT, it

is possible to determine the time dependence of the strain from

equation (106), and the maximum and minimum values of strain. Thus,

at T - O, = 0, and since for T Z 0 d, -d , i.e., E is increasing, and
dTdT

T Z 0 , -, i.e., ( is decreasing, C must be a maximum at T= 0.
dT d= d e

On the other hand, at T = T , again d- 0, but for 0 < T < T , -0 dT OG dT

and hence C is decreasing, and for T < T < TT, = + and hence E iso d

increasing, E" must be a minimum at T = T . By the similar reasoning
0

C also must be a maximum at T Tr; and a minimum at T= . In
0

summary, for z > 0, we have

T 0 Tr r T 2 7T_ _ _0 0

dEdTl 0 - 0 + 0 - 0 + 0
T(decreases) (increases) (decreases) (increases)

state of El max. min. max. min. max.

For a given set of values of z and • , the strain cyclic variation is shown

in figure 7(a). It is seen that there are two cyclic variations of C

during one cycle of excitation (U < T < 2 rr).

(b) Case when 12 z sin tr• > a 1 El

In this case there are no solutions for equation (109).

It is observed from equation (107) that the following is true. For

z>0

T 0 iT 2n

dE- 0 +
dT (decreases) (increases)

state of C max. min. max.

Therefore, there will be only one cycle of variation of ( during the

interval of 0 < T < 2 Tr. The time variation of I for this case is

shown in figure 7(b).
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At a given instant (i.e., T = a constant ) equation (108)

represents a curve in the z - ý plane. Sketches of the curve are

shown in figures 8(a) and (b). A series of curves at different instants

of time for the case when alli>h are shown in figure 8(a). Starting

from outside (at T = 0), the curve moves toward the center of the beam,

and coincides with the center line of the beam (ý axis) at T = rr/2.

From T = ir/2 to T = Tr the curve moves outward in the other direction.

From T = i to T = 2w, the motion of the curve is reversed. Figure 8(b)

shows the curves for the case a r1l<h. The curve again moves with

time inward at the side for z < 0 during the interval 0 < T < Tr/2,

coincides with the ý axis at T = T/2, moves outward at the side for

z > 0 during the interval Tr/2 < T < iv, and then reverses the motion

during the interval 7r < T < Z2. The difference between the cases

represented by figure 8(b) and figure 8(a) is that in figure 8(b), the

curve starts inside some part of the beam at either T = 0 or T = 7r,

and there is a portion of the beam (two shaded areas) that is always

outside the curve; while in figure 8(a), at either T = 0, or T = r, the

curve is completely outside of the beam. This difference is signifi-

cant in that the portion of the beam which is always outside the

curve (the two shaded areas) is the area for which I Zz sin nt I > alIII,

and thus, for which no solutions (T 0, ) of equation (109) exist.
0 o

Consequently the strain cycle for this portion of the beam can be

represented by figure 7(b). For the other portion of the beam (area

which is not shaded in figure 8(b), and the entire beam of the case

shown in figure 8(a), the strain has two cycles which is represented

by figure 7(a).
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W-- r 1 = 0; 2 T"

EO
0 0 T =T 0 T 0

0 0

z > 0 z < 0

(a) Two loop case -- 2 z sin n at < a1I ql, corresponding

to Figure 8(a) and unshaded area of Figure 8(b).

(T

T 0; 2 Tr--T -- Tr

E

T = 7 T 0=O; 2Tr-

z> 0 z < 0

(b) Single loop case -- I 2z sinnfl > a, i-1, corresponding

to shaded area of Figure 8(b).

Figure 9 - Hysteresis Loop of Beam Stresses
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Based on the observations on figure 7 and 8, and the

above discussions on the two types of cyclic variation of strain,

stress-strain curves of the hysteretic type can be formed as shown

in figure 9(a) and (b).

The functional form of the stress-strain law can be

formulated by using equation (104). For the two cycle case, for

z > o and the part of the cycle oT , figure 9(a) as compared with
0

figure 6, we have,

Cl =(T0 ),(min.) and C 2 =f(0), (max.)

while for z > o, and part of the cycle r0 :
o

C1 =(Qo ), (min.), andC 2 (Tr), (max.)

Note that C(T ) = (0). From equation (5), we haveO 0

((0) (0)-z 0, (0)
x

(70) = (n))-z0, (IT)x

from (84), (105) and (47), it can be shown that

C(0) = E(Tr), and 0, (Tr) = - 0, (0).
x x

For brevity, let us denote (0) by C , and 0, (0) by 0, , then we have
m X xm

((0) C -z..o,
m xm

E(TT) €m +Oxm(10

To obtain the minimum valueE (T ), substituting equation
o

(109) into equation (106), thus we have

E(T ) = - T- ir sin ir 2 111)
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This indicates thatE (T ) is proportional to (z/1)2 , and if (z/1) is small,

(TO) can be neglected.

Using equations (104), (110), and neglecting the( (To) = 0)

terms, we have, in terms of E and 0,x, the following stress-strain law

with two loops

OT 2!1 ZS=E zO, ) + [ 2 I + z(2cO,
- - x 2 m x
WT 0 - 2 2 1 21o "j 6m{, ) -z (0, -- 0,)I)(112)

m xm 'x 2 xmJ

z EM O, ) + z ZEE]

OT i[ 2 +~ m 2 mE_ z , XE ++T 2m E Em
a-

rTT

-z(2EO , +Em 0, - Z 'm OE x +, E Oxm)

2 2 1 2 ]+±z (6, +--,-+20, 0, )i (113)
x 2 xm x xm

Now we turn our attention to the single loop case (figure 9(b)). As

figure 9(b) is compared with figure 6, we have

For z > 0: E1 = E(7r), min.

E2 = E(O), max.

and for z < 0: C1 =E(0), min.

E£ = E(ir), max.

However, due to symmetry, we have

(z)t T=0 at T = Tr
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Thus, for the part of the cycle on, we have

E2 = Em-IzI 0'xrm
for all z

El = + IZj 0'xm (114)

Substituting equation (114) into equation (104), the stress-strain law

of the single loop type is obtained:

x 2 1 - -,. 2z.(E- -M) - 2x

+mZz1, E )( -0, )z -26, 0, z (115)
xm m x xm xx Z1

4.2.2 Simply Supported Case

The first approximate solution for the simply supported

case, as given in Section 3.4, shows that

w = 1$, w la1 = ia1ii sin irw COs T

1 1

1 2u -0, uZ,6+ w ,I 0 o (116)

Substituting equation (116) into equations (47); (5), we have,

z 2
E = a 71 sin lrý cosT

1 1

dE z r Z2 a i1sin wtsinT (117)
TT -7 1

Equation (117) indicates that the strain varies linearly

across the depth of the beam and the neutral axis is at the center. It
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also forms a single loop from 0 to Tr and back from Tr to 2Tr, and the

loop is similar to the one shown in figure 9(b). The functional form

also must be the same. In other words, for the simply supported case

with one end axially free to move, the stress-strain law is ex-

pressed by equation (115).

Note that the main parts (elastic part) of the stress-

strain law of equation (112), (113), and (115) are all the same as

expressed by the term E (E- zO, ). The only difference is the second
x

order effect of hysteresis which is represented by the terms with the

coefficient v.

4.3 AXIAL FORCE AND BENDING MOMENT TAKING MATERIAL

DAMPING INTO ACCOUNT

The axial tension and bending moment are defined respectively:

N = Af'dA

r (118)

M = J zdA
A

The integration is over the entire cross section of the beam. Again

the immovable hinged ends case and simply supported case shall be

considered separately.

4.3.1 Both Ends Hinged Case

In Section 4.2.1, it is shown that the addition of the axial

tension causes the beam to have at some points two cycles of strain

and some points one cycle of strain during one cycle of beam motion.

The criterion of determining which part of the beam has two cycles

and which part has one cycle is, as explained before, obtained by
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examining the roots of equation (109); while the criterion of deciding

which branch of the hysteresis loop is applicable is to examine the

signs of the loading rate (dE/dT) of equation (107). In both equations,

(109) and (107), there are three variables -- T,a and z, and thus at

any given instant T, but at different locations of beam (different t and

z), stress-strain relationships may be different. Consequently, the

integration of equation (118) will not only give complicated expressions

for N and M but also take different forms at different part (t) of the

beam. In general, therefore, the analytical expressions for the damped

motion of the two hinged ends case are very complicated. For the sake

of simplicity, only two limiting cases will be considered. One limiting

case will be for beam amplitude of vibration large in comparison with

beam depth; while the other limiting case is the one for beam amplitude

small in comparison with beam depth but still large enough to produce

nonlinear effects (figure 7(b) ). It may be expected that the general

case (intermediate case) will have a behavior intermediate between

these two limiting cases.

4.3.L1 When Amplitude is Large Compared with Depth
of the Beam*

If the amplitude is sufficiently large so that in equation(109)

-2z
COST - sin irt = 0 (i.e.Iali > > 2 z sin 7rt)

•r 3
then T T T -3- t (figure 7(a) ).

0 2 o 2

In the following, for brevity, this case will be referred to simply as the
very large amplitude case
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wr 3wIf the approximation$ To - - and To = - are used, the unloading and

the loading cycles of the beam can be written as

0 
OT

0

•T

0

3w 4-3•TT

0

3w
-< < T < r (119)

0

Using the appropriate formula of equations (112) and

(113) and substituting (119) into equation (118), we obtain the following

results.

N(- 2 1 2
2 = EAE- EA(E -1- )- EI (0, -- 6

N (2 2m 2 x Z'xm

3= =EI + -EA2 + 2 6,EX -2 2 m m m)

M (

S=- x -Z 0 (+ x- 2m xm m 0,x (2xm

M~ Tr

(121)
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where

A = JdA = bh

I = I bh3
12

4.3.1.2 When Amplitude Is Small Compared with
Depth of the Beam*

If the amplitude is small so that we make the

approximation Zz sinin > Ra1IT, then there is no solution for equation

(109), and the stress-strain law takes the simpler form of equation

(115). Strictly speaking, however, the relationship of 2z sinrý > I a,1 1

can not hold for the whole span of the beam, since sinnrý approaches

zero toward the end of the beam (at ý = 0 and 1), while Ia l is never

zero, no matter how small it may be. The approximation is taken in

the sense that I a11l is sufficiently small so that at any instant only a

very small portion of the entire beam behaves with the hysteretic

behavior of equations (112) and (113) rather than with the hysteretic

behavior of equation (115), and the substitution of equation (115) for

equations (112) and (113) for this small portion of the beam does not

alter the damping behavior too much. Physically speaking, this is the

case when the shaded areas of the beam shown in figure 8(b) become

predominant; while the unshaded area becomes negligibly small.

"In the following, for brevity, this case will be referred to simply
as the small amplitude case.
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Based on this approximation, and the loading

cycle as shown in figure 9(b), the substitution of equation (115) into

equation (118) gives

.0-

N = EAE+ El v EM)-( )(8, + , )1 rn xm- x

4-
10 - Ev F- 2

M= -EIO, -E I v 0, 0, I+-(C-m)
x 3 x xm 2 Lim

+ I (0, 2 m)I (122)
3 x xmJ)

where upper signs refer to Tr < T < 2Tr, lower signs refer to 0 < T < 7T,

and
h

f21 2

I= Zf 2 bzdz = bhI1  J4

0

h
32 1 4

13 2 bz dz bh (123)

0

4.3.2 Simply Supported Case

As stated in Section 4.2.2, for the simply supported case

the stress-strain law follows the same form of equation (115), which

in turn gives the axial tension N and bending moment M the same

expressions as shown by equation (122).

4.4 EQUATIONS OF MOTION WITH MATERIAL DAMPING

As observed in the analysis of Part I, for the type of slender

beams considered, the influence of the shear deformation and rotatory

inertia is small. In the following analysis the shear deformation and

rotatory inertia will be neglected for simplicity.
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Since shear deformation is neglected, we have

-Y = 0, and 0 = a (124)

and equation (7) becomes
W,

tan 0 =
1 + u,

x

W,
x

sin 0 = -

1 + E,

cos 0 = (125)

When both shear deformation and rotatory inertia are neglected,

equation (12) is reduced to Q = M,xJ/1 + E). By using this expression

and equation (125), Q and Care eliminated from equations (10) and (11),

and thus we have

(Ncos 1 M'x sin20 = pAu, (126)(Nco ), 5 + u, tt

M, CosO

(N sin 0), + 1x U + K (x, t) = p A (w, 2t- w-Cs01t 17

x x

Since there will be a phase difference between the external

excitation and the beam motion, a phase angle 4i1 is introduced as

follows

T = ,+ k or 0 lt = T - (128)

and we let bI1 be expressed by a perturbation series:

2

4I = 'PO + I1P1 + 421Y' + (129)
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Then

cos 1 t = COS (T - k1

Scos (T - % 1).+i r1ll sin (T- I%

-_ (T - %d + 2+, sin (T - + (130)

Now values of N and M are substituted in equations (126) and (127) and

the resulting equations are transformed into dimensionless form.

Perturbation equations are obtained by techniques similar to those used

in Part I for the undamped case. Among the difference in the resulting

equations are those due to the introduction of the phase angle kp1 , and

those due to the fact that the expressions for N and M at different

intervals of time (T) are different now. Consequently the equations of

motion take different forms during different time (T) intervals. After

some computation, we have

= 0 (131)

41 WlTT + w 1 0 
(132)

u2,t +-w2 It t =-0 (133)

4

c 1 u2,TT = (u3,t + wl, w2,t +Cw lWl,), (134)

where the notation is the same as in Part I.

Equations (131) (132), (133) and (134) are valid for all intervals

of time (0 < T < 2w), and for all boundary conditions. In fact, they are

identical to the corresponding equations for undamped motion,

(equations (51) (52), (53) and (55)). The second order and third order

58



equations for w (i.e., w2 , and w 3), however, are all different and are

listed below.

(a) For both ends hinged case with very large amplitude
4 144
IwV+ w, 11g+ l 1 1 3

1 -- w,. -T (w +W u
2 1,TT c 2 I1, 1l,g 2,g '9

1

1 w 0 cos(o ( O)+ 2 (wI ¥ wI(2w1

1 2135(u + w1 -- , - - w )i = 0 (135)

it

where the upper sign is for 0_< T < •,,and the lower sign is for

3w
r<_ T <_ 3r and

4

SW2,TT +w 2, + 1 1 +l u
2 1I,TT c 2 l,ý 1, ,9,

4 W CO 1 2 T w U
- 1 w 0o( I 01 2 [Z 1,99u 2 g+ w 1i

1 21
+- w1. 9m (u2,g + 2wl,g )m] 9=0 (136)

7rwhere the upper sign is for - < T < it, and the lower sign is

37r
for - < T < 2w.

(b) For both ends hinged case with small amplitude and

also for a simply supported case
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1
4  4  1 1 3

2 g l,TT C 2 1,C 1,u,+, 29
1

+2K (W l W ), K (w 2 W

-w cos (T-" ) = 0 (137)

"4 4 Al a 21
Iw3, +  + , 2 ",TT + P -2 wlTT

1 1

I-(w 2w + w ),+ (w 2w )
1 ( 1,g w2,g + u3,, Wl,,) I' + Wl, l,ýg)

+ 2K (wlg wat - Wl,ggmw2zgm),aa + ZK (w 2, w1,9m

A
+ ltgwgt ) -- p w COS (T - %

1

w I 1  1 sin (T 10 0 (138)

I vI3 3hv
where K = 3- 13- , and the upper signs are for 0 < T < Tr, and the

211 161
lower signs for Tr < T < 2?r.
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SECTION 5

SOLUTION OF THE PROBLEM

5.1 BOTH ENDS HINGED CASE

5.1.1 Large Amplitude Case

Up to the first three equations (131, 132 and 133), the

solution is the same as that of the undamped motion, and thus we have

uI = 0 (61)

w = a sin Tra COS T (65)
1 1

PI = 1

I 2 I 2 2 2u2, +-•Wl, = - aI r cos T (66)

-It 2 4 1

u 2 = 1 aI 2T sin 2zr cos T (77)

To obtain the periodic solution of w 2 from equations (135)

and (136), first we must eliminate the secular terms in equations (135)

and (136). With phase shift added, these terms consist of both cos T

sin Tr, and sin T sin Tra. These terms can be eliminated by first

multiplying equations (135) and (136) with cos T sin irt, and secondly by

sin T sin nrt, and then integrating the resulting two equations throughout

the whole beam length (0 < a < 1), and over the period of one cycle

(0 < T < 27r), which gives:

61



1' SZr "1
sin Trgdg f r 4W, + w-2, + p 4 A0 1 2 ,TT

1

+ w u - W COS (T - L COS TdT

c '1, 2 ,, ,9 01] C 0 dT

+ fnfsin wgdt( [..f + f2 ][~ (uz
fl r 2,,

0 0 2T

1 IT

w ] CoS T dT) - sin irad(

"3r.-r I

2 W,9 1,,9 2 I~ )i

]+r ml os

Z ~H [wlm, (u2,

7T 33r2 f[[fii
w 1 cos T d T + f sin Trd ( - J

O 0" - i

2

+ ] Wl2rm u'2 + u W 2
) ] COST d = 0 (139)
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and

f snwgdt 2 [p 4 + WZgg+P4A1
sin 1 WZ,TT W1 2 ITT

I

- - w cos (T - soi)] n T dT

+4f sin rtdt + f u
1f

snd) 2 2

(] I~~
'( [ sin + f ] sw

1 3w

4- 1 f sin ir2si T d J s wtdt
0 0

37r

f2 [I~t( 2siTd
- w ,• u2,t + 2 'lg1si T)d

T 33w

2 0 o - w ltm 2'

S7t 3w

+zw~)Isin TdT) 2~i sin wt~dg(f-

0 0 -0-

+ f 1 W I 1 •m Iu + I wl, ] sin T = 0 (140)
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where, for the sake of brevity, integrations with same integrand

but different integration limits are grouped together. Using the

relationships that

o1 f 4 +COSTdT -0,

S f W2,TT sin T

0 0

and substituting all the known quantities into equations (139) and

(140), and carrying out the integration, we obtain

5 3 5
a TT A 3a Tr1 11 1 43 6 3ir-8a I T24 w cos q - v•a 3 -8 0 (141)

2 32c o ol 1 482w0
1

3 6a wT
4 1

2r 4w0 sin 4 ol a 1] 24 - 0 (142)

Solving these two equations for Al1 and o' 0 we obtain

3 2

- 1 vina lT/ (143)
4 ol sin 48 w

0

and

A11 912 2 (.3Tr-8)rrlal2 2- 4 2 vw2  Tr2 a1
2 1 24 1 7ra 48

The response equation is

2 1 912 2 2 (3n-8).f 2 2 - 4 [2 4 vr a1 Ti
-+-a Ti ±-v a,+-w2 2 1 24 7r] a 1 +0a 48o0 ~4h1

1 (145)

Note that if v 0, equation (145) is reduced to the response equation

for the undamped case, i.e., equation (76), and that because of the

damping, the response curves are closed at the top now. To solve
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for w 2 we observe that equations (135) and (136) both can be put into

the following form:

4
7r w ,.TT + w F (T, (146)

By expressing F(T,t) into a double Fouries's series for the intervals

(0 < < 1) and 0 < T < Zr, these two equations can be combined into

one equation. Thus

CD

Tr w w cos (T4r 3) w7( sin mirt
o, w , t ol m

m = 3, 5,

1 3 3 534.
- 1-a ir sin Trg COS 3T + -4 aI Tr sin 7rt

m -3, 5,. .

(-I) 2 m - COS MT + (m + l)(( 4 7m + 18) sin mT

m (m 2 _ 4) z m (m - 4) (m - l)(m2 -9)m = 5, 7,

2 1+ T. sin 3 (147)

0 < T < ZTr, 0 < t<l

where the secular terms are being removed by the use of equations

(141) and (142). Solution of equation (147) is

65



4 l sin mwrt 3 sin nt cos 3T
o2 iw 001 (mC4 '1 )128colmm - 1)

m = 3, 5,

+ La 1
3 ~ ~ [z(in 2 - 3) cos mr2

+ Yn a 3 w sin• if 0 ( )COM
4 1 zm(m 2-4)( m 2

m = 3,5... m -4)(15-

0- (m2 + 1) (m4 - 7m2 + 18 ) sin m T 22

Y m(m2 - 4) (m - 1)2 (m - 9) - 1Z- sin 30
m =3, 5, ... (148)

If all the terms higher than m = 3 are neglected, equation (148) becomes

1 3 cos3T1v (ACO tP ) sin 3'Fr + alco 3T?
w2 6-"•w cost-f - sn W +ai w

60T o ol 1 8C sin w9

V1. 3 11
-40 a1 ir sin wt (cos 3 T + -V-sin 3T) (149)

Equations (148) or (149) satisfies the boundary conditions of (58).

The solutions of W and d- up to the second approximation

can be written as

w a 1 sinng cos (T - qJ) + W-Ow sin 3rý Cos (T- 4)

33 2a1 
1 A1 Avtw 3 3 11a sin wtcos 3T - v-a1 3 sin wt (cos 3T +'- sin 3T)

12-81 40 1 6
(150)

u -j -W (aI" )2 sin Z'ir (1 + cos 2T) (151)
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Compared with the undamped solution, i.e., (79) and

(80), it is seen that the expression of u remains the same while the

expression of w is changed. The change is in the form of the phase

angle + and some additional terms with the damping parameter V.

5.1.2 Small Amplitude Case

Again we can use the undamped solutions for uI, u 2 , and

w1.

u1 =0 (61)

w = aI sin rw cOs T (65)

1 2 1 Z 2 2

u + w -, a 1 Wf Cos T (66)
z'9 z l,9 4 1

-1 2 2
u2 = - a ff sin 21r cos T (77)

2 81

To eliminate secular terms in equation (137), and at the
2

same time to seek the solution of A l1/ 1c and o 0, the same technique

used in Section 5.1.1 will be applied again. First equation (137) is

multiplied by sin wt cos T and sin irw sin T and then the two resulting

equations are integrated over T (0 - Zw) and t (0 - 1). Thus we have

1 2•r
sin1 4 2,TT+ w+ 4 Al 1

+w w 1 -- Wl,TT
1

1o 3

1 3 u +2K (w w
-c ( W l,+ 1A, 2,, 1,9 lm)
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Tr 2w

-w 0 cos (T- cOS TdT - K f Wl,

2
-w ) COS Td =0 (152)

and

•osin Trtdý f p14 w1+w4 11A 1 1 3
21w2,T +,ag 1 2 C 2 1,t

0o0 1

+ W u + 2 K (w w - w C3oS )]sin TdT

•r 22

- K J- J(w, - Wl,m ), si Td T0 (153)

The evaluation of the integrals gives the following two equations

5
a1 A11+ 3w5 3 8K 2 6 4

2 2 c32 1 3 1 o o1
1

32 2 5 4
-3 K a w -2n w sin o = 0 (155)

9 1 0 ol

2
Solving for A 11 W1 and sin '401 , and letting

3hv I h h
K 61e] 2 2

1 Al 121

We have

Sol = sin 3 w t (1 56)
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2 111 ~ ~ h -- 4 2 4 Yh 2 29•(a• "+ - w° -- a1 )(57
- 9-(aTO vaTr+ -"---' (157)

W 4h 2  1 1 oaI 31 1

The response equation takes the following form

a1 912 2 h - 4 2 vha 22 '158
2 + 42 (a I I valoW + [ -W (158)

(0 4h
1

Again we see that if there is no damping, i.e., v = 0, equation (158) is

reduced to the response equation of the undamped case, i.e., (76). The

addition of the damping, however, makes the response curves closed at

top (figure 12).

To solve equation (137) for w2 , first all the known

quantities of equation (137) are expressed in a double Fourier's

series for the intervals 0 < T< l1 0 < < ZW

Thus

t 4WTT + 16K2 m sin mgOS T + 4 w 0 r3IrwT+ w -, a ir mi_4

m = 3 , 5 , . . .

sin mW 1 3 4

cos (T- l -- 6 a1 w sinrrg cos 3T

m = 3, 5,.

+ O 16 K sin mT al2 5

m 3,5,... m(m2 - 4) 1
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64 2 4 •msnm
30 164- - aI 214si n m sin/ m 0 O< T_< 2Tr, 0_< •< 1 (159)

m -4
m = 3, 5, ...

where the secular terms are being removed by the use of (154) and

(155).

Solution of (159) is

00

Sa 2 K 16 m sinmWg cos T

1a 1 (m4 - 1) (m2 - 4)
m = 3, 5, ...

+4 w sin m C (

V 0 z (m 4 o 0
m 3 5,...-1)

1 3.
+ a sin ira cos 3T

128c 1

oo al2 sin mT cos 2W

T--I m (m2 -4) (m - 16)m = 3, 5,..

64 -- K m sin mtr (160)

643 1n z=35 - 4)(m -1
m = 3, 5, ... (m -4)m4-1

In equation (160) if all terms higher than m = 3 are neglected, the

equation can be reduced to:

3wr 2 w0o
-- Ka sin 31ir cos T + -0sin 37rt cos (T-4o

2 25 1 60r o7
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sin w9 3 16w 2+ 12 al cos 3T.- KaI sjn 3TcosZ21r•
128c 1 975 1

4 2.
-- • a sin Tsin 31wg (161)25 1

Now the solution of w and u, up to the second approximation, can be

written as

-- 2 sin 3wr
w a 1q sin lrg cos (T- 4) +Wo 6W- cos (T -4')

A12 3 3 vh 2 2 w
1281 a1 q sin r~cos 3 T- -TaI 11 ( 32-cos 2irg sin 3T

40"--- sin 3wrg cos T + 3 sin 3wg sin T) (162)
400 100

= r 22W-1 al 7 sin Zg (I + cos 2T) (163)

Compared with the undamped solution (79) and (80), it is

seen that the expression of u remains the same, while w is changed.

The change is in the form of the phase angle 4' and some additional

terms with the damping parameter v.

5.2 SIMPLY SUPPORTED CASE

The solution of uI, wI, u 2 , are the same as that for the undamped

case, i.e.,

uI=0

wI a1 sin ng cos (84)

1 2
u + =0 (85)

1 22 1
u 2  - a 1 wr ( +j sin 21W) (I + cos 2T) (86)
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2
To obtain A W and w , again equation (137)01 2

2
will be used. In fact, all the results for A 11 /W 1 , 4)oi' and w 2 of

Section 5.1.2 can be directly applied here. But this time, we have

1 2

2,t + 2 wist = 0

Thus instead of equation (157), we have

11 h - 4 2 4 _ ývh 2 2 ý 2]1 2 v a pr + Tr a 171 1w 0 T1 T, a, 11 n (164)

The solution for the phase angle, however, is the same as (156),

01 3w in- 1 viTha 1 2 (165)
0

Similarly solution of-w 2 (161) becomes:

W? 3K a 2 -rr sin 37Tt COS T + 1 w sin 3Trt COS (T (166)25 1 ZoTr 0 ol

161T K a 2 Cos 27rt sin 3T - 4K a ?- sin 3nt sin T
975 1 25 1

To obtain the second order approximate solution of

response relationship (4L 21, ý11 ), first equation (134) is solved for

U 3* Thus

-rr 1 S COS 2T
1T 

8-rr 3 
in 27rt) 

Cos 
2T 

- 8 (2W 
- 1)
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+ 9K a 3 T 2 2 c Ts- a W COS T COS (T - ] si 2 _
50 lo40 ol 2 4

16K 3 2 COS 3 TrC 9Or 3+ 9--• l t cos TcOS3T(COS lr•+ 3 5K 1IcsT i
975 '1"'3 oa CO in

64K 3 2 6TT 3 csT cos 4rr)+264K al 3 r 2sin 3 T COS T_ - O K aI 3COS T sin-r( COS 27r + CS4r
2925 1 254

+ia2 CS21n 3+TIsi rý-K CO167i)(

4 2 4T1
+c 1 W cos T + -• sin Z2t•)(17

In solving u 3 , the boundary conditions (81) and (83) are used.

After all the known quantities are substituted into equation
2

(138), and the same technique as used in obtaining Al l/ 1 and

Lol is applied to the resulting equation, we get two secular equataons
2

for A21/W 1 and t11.

8112 -45 3 7 13V 4r 32(997-rr 2 -936) 3 3 5
192 Il 75 o ol 9 x 13000 T.0 a3 I12 a1 5r + I- - ( -5 a w s nT

Saw
25 1 o

a1 5 A21 4 4ll 4cos 41) - 2 - w Wo cos tP 1 - 2 + Zrr woll sin qo 0 (168)ol 2 w20 o 1 0

and

3 3 36 o 4 o 5
-125I- a1 i - 13-- aln Cos o- 2-- 5 alwr sin

4 A 1 1  4
-2Tw0 ol 2 _rw 04 COSA 0 0 (169)0 lZo 11 ol

1
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Solving (168) and (169) for A21 and 4 11, we obtain

2 1 8 2 a _2 0 1 1 9 9 7 Tr -9 3 6

W 2ra1 Cos 201 W1 13000
1 1

3hv (-8w 2w 2w
+ - 7 sintl- - - - Cs4

o oo+• •• 5n o- 25 cos tpoi 25 co ol

54hv 2)
+ a rtan (170)

1251 1a

Av 0 a C o s 4 w °

I W 2 taa I - 8w 1cos 1oI 135 1 cos
I

w ))o 0 81 3 2 vh 2
50 1 oi0 +2000 wo cos a0 1  ((

Terms inside the parentheses of equations (170) and (171) are small when

compared with other terms, and hence for simplicity they shall be2
neglected. Also the term AI/W 12 is substituted forthe use of

equation (164). Thus equations (170) and (171) become

A .4)r2 2 w~ 2 3vhn 2 a12
21 -(8n 45r 2 a 2 2 0
2 96 a1  wa . a +

(4lV (3 wo1)2 - (v-ha1

9971 - 936 Ihva 12 (172)+ 13000 ()
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and

2 2
3 vhw a

S2 vha (4 + 1 ) (173)

11 31 - J(3 w01 )2 - (v irha2

Thus the response equation, up to terms of second order, becomes

2
•tA A

111 21 2S = I '1
2224

2 2 121w 0 4

= -96 7r a+I 2 2 21
1r IT 13w 0 I 71 1 (vrh a T1

o 11

[vh(al71r)2 / v4 ~ 1 -(312 2 )
0 0

+997w -_936( ha Iq2(14
13000 ( (174)

The phase angle is

'P 'P0I 1 'ý mP
22

-1 v7Tha 1 2 4vha 11
sin 13w 2 1 31

0
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S 22121757 vrrha 1 I
+ 2000 1(1)+ (175)

I 2(3w0ZII 2 vTrha22 2

Again we see that if v = 0, equation (174) is reduced to

equation (98), i.e., the response equation of the undamped case,

but due to the addition of damping, the response curves are closed

at top now (figures 14, 15, 16).

Up to the second approximation, the solutions of w and u are

-- ~2 sin 3nr
w ali 1 sin Trý cos (T - 4') + WO 60sin COS (T- T )

3vhn a2 2 3
3v i0 a1 sin 3Tra (3 cos T + sin T)

vhrr 22- 325-- a11 2 cos 2rT sin 3T (176)

and

u = - T iTr)2 ( + 1 sin 21Tý) (I + cos 2r) (177)
8 12wr

Again it is seen that due to the effect of damping, the expression

of W is changed. The change is in the form of the phase angle 4' and

some additional terms with the damping parameter v. The expression

for -u, however, remains the same.
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SECTION 6

NUMERICAL RESULTS AND

EXPERIMENTAL VERIFICATION.

Calculations for two sample beams are made. One is of the

very slender type ± = (Aj) = 1110) , the other is of the
r

moderately slender type = = 69.3 Response curves

are shown in figure 10 through figure 17.

Steel beams are used. The physical constants for steel are:

E = 30 x 106 psi, G = 12 x 106 psi, density F= 0.283 lb/in. For

a rectangular beam, the shear distortion constant k' = 0.833, the

damping parameter v = 18.6 [301. Except the case of figure 17,

all the other cases are calculated for the external excitation in the

form of support accelerations.

The dimensions are:

Beam (a) -- very slender type

length I = 10 inch
1

depth h = 3 inch

1.
width b = - inch

2
= 0.813 x 106

At 2

The first natural linear frequency is

" = - gEl = 28.5 cps
2ir 21 Al4
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Note: Although the dimensions indicate a strip type plate

rather than a beam, tests show that the natural

frequency is equal to the value (28.5 cps) calculated

from the beam formula.

Beam (b) -- moderately slender type

I = 10 inch

1
h = - inch2

1
b = -- inch

2

= 2.085 x 10-4

At

2 = 458.5 cps

Note that the values of 1-- for both beams are small. The

Al 2

correction due to shear deformation and rotatory inertia can be

neglected.

Figure 10 shows response curves of Beam (a) for the

immovable hinged ends case. The hard spring effect is very

strong (equation (75) ).

Figure 11 shows the response curve of Beam (b) with

immovable hinged ends. The peak amplitude is twice as high as

the depth of the beam. The hard spring effect due to large amplitude

is so overwhelmingly strong that the influence of damping is

relatively insignificant. However, the damping does make the top

closed. In calculating the response curves, equation (75) (undamped)

and equations (145) and (158) (damped) are used.

Figure 12 shows the response of Beam (b) with immovable

hinged ends. But this time the peak amplitude is limited to 1/8 inch
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(depth of beam = 1/2 inch). Equation (75) (undamped) and

equation (158) (damped) are used.

Figure 13 shows the response of Beam (b) while simply

supported. The soft spring effect can be seen (on the stem curve)

but not significant.

For the response curves of figures 13, 14, 15 and 16,

equations (98) (undamped) and (174) (damped) are used.

If instead of the support acceleration, the beam is excited by

a periodic uniform loading, the right side of equation (56) is zero,

and consequently the last term of the response equation (98) is

dropped. The difference is shown up in figure 17, where by

equivalent uniform loading means that if only the linear theory is

considered, both loadings would give exactly the same response

relationship.

Tests have been conducted on the simply supported very

slender beam. Both the soft spring effect and jump phenomena

are demonstrated. Some of the test results are plotted in

figures 14, 15, and 16.

The specific damping of a material can be expressed by

D = J 0 -m (in-lb per cubic inch per cycle)

where a is the amplitude of the stress. But D is equal to the area

of the hysteresis loop, i.e.,

D =fi(*-V)dC (Figure 6)

By the use of equation (104), the integration gives

D = ± vEE3 (30E Z-/E)
3 00

For any value of E , v is determined by equating these two expressions

of D. For example, for Sandvik steel we have: m=23 and J=8.9 x 10-12

-3
if C 0= 3.08 x 10- , v = 2.0 3 . For comparison, response curves for

v = 2.03 and v = 18.6 are both shown in Figure 16.

*See [26], equation 36.9, page 36-7 and Table 36.5, page 36-35.
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SECTION 7

CONCLUSIONS

(a) The nonlinear effects due to large amplitude on the response

depends on support conditions. With immovable hinged ends

the response is of hard spring type; and for the case of

simply-supported ends the response is of the soft spring type.

(b) Nonlinear material damping in addition to limiting the amplitude

at resonance to a finite value, modifies the shape of the

response curve. It makes those response curves of the soft

spring type 'more soft; and those of the hard spring type less

hard.

(c) The effect of shear distortion and rotatory inertia on the

linear or nonlinear response curves is related to the slenderness
I I

parameter - 2 For beams with small 1 2 values, the

AlA

correction due to shear distortion and rotatory inertia is

usually negligible.
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